Quantum-behaved Particle Swarm Optimization with Nelder-Mead Simplex Search Method
نویسندگان
چکیده
منابع مشابه
A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search
This paper integrates Nelder–Mead simplex search method (NM) with genetic algorithm (GA) and particle swarm optimization (PSO), respectively, in an attempt to locate the global optimal solutions for the nonlinear continuous variable functions mainly focusing on response surface methodology (RSM). Both the hybrid NM–GA and NM–PSO algorithms incorporate concepts from the NM, GA or PSO, which are ...
متن کاملNelder, Mead, and the Other Simplex Method
In the mid-1960s, two English statisticians working at the National Vegetable Research Station invented the Nelder–Mead “simplex” direct search method. The method emerged at a propitious time, when there was great and growing interest in computer solution of complex nonlinear real-world optimization problems. Because obtaining first derivatives of the function f to be optimized was frequently i...
متن کاملImproved Quantum-Behaved Particle Swarm Optimization
To enhance the performance of quantum-behaved PSO, some improvements are proposed. First, an encoding method based on the Bloch sphere is presented. In this method, each particle carries three groups of Bloch coordinates of qubits, and these coordinates are actually the approximate solutions. The particles are updated by rotating qubits about an axis on the Bloch sphere, which can simultaneousl...
متن کاملGlobalized Nelder-Mead Method for Engineering Optimization
One of the fundamental difficulties in engineering design is the multiplicity of local solutions. This has triggered great efforts to develop global search algorithms. Globality, however, often has a prohibitively high numerical cost for real problems. A fixed cost local search, which sequentially becomes global is developed. Globalization is achieved by probabilistic restart. A spacial probabi...
متن کاملStreamflow forecasting by SVM with quantum behaved particle swarm optimization
Accurate forecasting of streamflows has been one of the most important issues as it plays a key role in allotment of water resources. However, the information of streamflow presents a challenging situation; the streamflow forecasting involves a rather complex nonlinear data pattern. In the recent years, the support vector machine has been used widely to solve nonlinear regression and time serie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Risk Analysis and Crisis Response
سال: 2015
ISSN: 2210-8505
DOI: 10.2991/jrarc.2015.5.1.4